Jan Riopedre, Arnau Rojals and F. Javier Rodríguez
Motivated by $\delta(x)$ approach as multiplyng a ‘suitably smooth’ function.
Motivated by $\delta(x)$ approach as multiplyng a ‘suitably smooth’ function.
We say that $\phi(x)$ is a test function if:
$\phi_n(x)$ and all its derivatives $\phi_n^{(m)}(x)$ tend to zero, uniformly in both $x$ and $m$
There is an interval $(a, b)$ containing the support of all the $\phi_n$.
$\langle f, \phi \rangle = \int_{-\infty}^{\infty} f(x) \phi(x) dx$
Properties
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
Why?
Take the of function further
More broader and general
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
A distribution $( D )$ is a continuous linear map from the space of test functions to $( \mathbb{R} )$
$\mathcal{D} : \phi \mapsto \langle \mathcal{D}, \phi \rangle \in \mathbb{R}$
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
$ \langle \mathcal{D}, a \varphi + b \psi \rangle = a \langle \mathcal{D}, \varphi \rangle + b \langle \mathcal{D}, \psi \rangle $
if $ \varphi_n(x) \to 0 \quad \text{as} \quad n \to \infty, $
then $ \langle \mathcal{D}, \varphi_n \rangle \to 0 $
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
$\langle \mathcal{D}^‘, \phi \rangle = -\langle \mathcal{D}, \phi’ \rangle$
Example: $\mathcal{H}'(x) = \delta(x)$
Motivation
Definition
Linearity and continuity
The delta function
Properties
The derivative of a distribution
$\langle \mathcal{D}^‘, \phi \rangle = -\langle \mathcal{D}, \phi’ \rangle$
Example: $\mathcal{H}'(x) = \delta(x)$
$\langle \mathcal{D}^{(m)}(x), \phi(x) \rangle = (-1)^m \langle \mathcal{D}, \phi^{(m)}(x) \rangle$
$$\mathcal{C}^{\infty} \text{ and with compact support in all the arguments}$$
$$\hat{\phi}(k) = \int_{-\infty}^{\infty} \phi(x) e^{ikx} , dx$$
$$\phi(x) \text{ test function} \quad \Rightarrow \quad \hat{\phi}(k) \text{ test function}$$
$\hat{\phi}(k) = \int_{-\infty}^{\infty} \phi(x) e^{ikx} dx$
$\hat{\psi}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(k) e^{-ikx} dk$
$\frac{d\hat{\phi}}{dx} = -ik\hat{\phi}$
$\hat{x\phi} = -i \frac{d\hat{\phi}}{dk}$
The action of the Fourier transform of an ordinary function on a test function:
$$\langle \hat{f}, \phi \rangle = \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f(x) e^{ikx} dx \right) \phi(k) dk$$
$$ \hspace{27mm}= \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} \phi(k) e^{ikx} dk \right) f(x) dx $$
$$ \hspace{-55mm}= \langle f, \hat{\phi} \rangle. $$
So we define: $\hspace{5mm} \langle \hat{\mathcal{D}}, \phi \rangle = \langle \mathcal{D}, \hat{\phi} \rangle$
$\hspace{68mm}\langle \check{\mathcal{D}}, \phi \rangle = \langle \mathcal{D}, \check{\phi} \rangle$
The Fourier transform of the derivative $\mathcal{D}’ = \frac{d\mathcal{D}}{dx}$ is $-ik\hat{\mathcal{D}}$
$ \langle \hat{\mathcal{D}^‘}, \phi \rangle = \langle \mathcal{D}’, \hat{\phi} \rangle $ $ = -\langle \mathcal{D}, \frac{d \hat{\phi}}{dk} \rangle $ $ \hspace{28mm}= -\langle \mathcal{D}, ix \hat{\phi} \rangle \ = \langle -ik \hat{\mathcal{D}}, \phi \rangle $
So we define: $\hspace{5mm} \langle \hat{\mathcal{D}}, \phi \rangle = \langle \mathcal{D}, \hat{\phi} \rangle$
$\hspace{68mm}\langle \check{\mathcal{D}}, \phi \rangle = \langle \mathcal{D}, \check{\phi} \rangle$
$$ \int_{-\infty}^{\infty} \delta(x) e^{ikx} dx = e^{ik \cdot 0} = 1 $$
$$ \langle \hat{\delta}, \phi \rangle = \langle \delta, \hat{\phi} \rangle = \hat{\phi}(0)$$ $$ = \int_{-\infty}^{\infty} \phi(x) dx = \langle 1, \phi \rangle $$
$$ \check{\delta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(k) e^{-ikx} , dk \ = \frac{1}{2\pi}, $$
$$ \overset{({\check{\delta}}\hat)=\delta}{\Rightarrow} \quad \hat{1}(k) = 2\pi \delta(k) $$
Consider:
$$ \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \quad t > 0, $$
$$ u(x, 0) = \delta(x). $$
Taking the Fourier transform in $x$. The equation for $ \hat{u}(k, t)$ is:
$$ \frac{\partial \hat{u}}{\partial t} = -k^2 \hat{u}, \quad -\infty < k < \infty, \quad t > 0, $$
$$ u(x, 0) = \delta(k) = 1. $$
Taking the Fourier transform in $x$. The equation for $ \hat{u}(k, t)$ is:
$$ \frac{\partial \hat{u}}{\partial t} = -k^2 \hat{u}, \quad -\infty < k < \infty, \quad t > 0, $$
$$ u(x, 0) = \delta(k) = 1. $$
$$ \hat{u}(k, t) = exp(-k^2t) \Rightarrow u(x, t) = \frac{1}{2\sqrt{\pi t}} exp(-x^2 / 4t). $$